
1

CPE 626
Advanced VLSI Design

Lecture 4: VHDL Recapitulation (Part 2)

Aleksandar Milenkovic

http://www.ece.uah.edu/~milenka
http://www.ece.uah.edu/~milenka/cpe626-04F/

milenka@ece.uah.edu

Assistant Professor
Electrical and Computer Engineering Dept.

University of Alabama in Huntsville

 A. Milenkovic 2

Advanced VLSI Design

Outline
Introduction to VHDL

Modeling of Combinational Networks
Modeling of FFs

Delays
Modeling of FSMs

Wait Statements
VHDL Data Types

VHDL Operators

Functions, Procedures, Packages

 A. Milenkovic 3

Advanced VLSI Design

Variables
What are they for:
Local storage in processes,
procedures, and functions
Declaring variables
variable list_of_variable_names : type_name
[:= initial value];

Variables must be declared within the process in
which they are used and are local to the process
Note: exception to this is SHARED variables

 A. Milenkovic 4

Advanced VLSI Design

Signals
Signals must be declared outside a process
Declaration form
signal list_of_signal_names : type_name
[:= initial value];

• Declared in an architecture can be used
anywhere within that architecture

 A. Milenkovic 5

Advanced VLSI Design

Constants
Declaration form

constant constant_name : type_name := constant_value;

• Constants declared at the start of an architecture
can be used anywhere within that architecture

• Constants declared within a process are local
to that process

constant delay1 : time := 5 ns;

 A. Milenkovic 6

Advanced VLSI Design

Variables vs. Signals
Variable assignment statements

expression is evaluated and the variable is instantaneously
updated (no delay, not even delta delay)

variable_name := expression;

• Signal assignment statement
signal_name <= expression [after delay];

– expression is evaluated and the signal is scheduled to
change after delay; if no delay is specified the signal is
scheduled to be updated after a delta delay

2

 A. Milenkovic 7

Advanced VLSI Design

Variables vs. Signals (cont’d)
Process Using

Variables
Process Using Signals

Sum = ? Sum = ?

 A. Milenkovic 8

Advanced VLSI Design

Predefined VHDL Types
Variables, signals, and constants can have any one
of the predefined VHDL types or they can have a
user-defined type
Predefined Types

bit – {‘0’, ‘1’}
boolean – {TRUE, FALSE}
integer – [-231 - 1.. 231 – 1}
real – floating point number in range –1.0E38 to +1.0E38
character – legal VHDL characters including lower -
uppercase letters, digits, special characters, ...
time – an integer with units fs, ps, ns, us, ms, sec, min, or hr

 A. Milenkovic 9

Advanced VLSI Design

User Defined Type
Common user-defined type is enumerated
type state_type is (S0, S1, S2, S3, S4, S5);
signal state : state_type := S1;

• If no initialization, the default initialization is the leftmost
element in the enumeration list (S0 in this example)

• VHDL is strongly typed language =>
signals and variables of different types cannot be
mixed in the same assignment statement,
and no automatic type conversion is performed

 A. Milenkovic 10

Advanced VLSI Design

Arrays
Example

type SHORT_WORD is array (15 downto 0) of bit;
signal DATA_WORD : SHORT_WORD;
variable ALT_WORD : SHORT_WORD := “0101010101010101”;
constant ONE_WORD : SHORT_WORD := (others => ‘1’);

• ALT_WORD(0) – rightmost bit
• ALT_WORD(5 downto 0) – low order 6 bits

• General form
type arrayTypeName is array index_range of element_type;
signal arrayName : arrayTypeName [:=InitialValues];

 A. Milenkovic 11

Advanced VLSI Design

Arrays (cont’d)
Multidimensional arrays

type matrix4x3 is array (1 to 4, 1 to 3) of integer;
variable matrixA: matrix4x3 :=
((1,2,3), (4,5,6), (7,8,9), (10,11,12));

• matrixA(3, 2) = ?

• Unconstrained array type
type intvec is array (natural range<>) of integer;

• range must be specified when the array object is declared

signal intvec5 : intvec(1 to 5) := (3,2,6,8,1);

type matrix is array (natural range<>,natural range<>)
of integer;

 A. Milenkovic 12

Advanced VLSI Design

Sequential Machine Model
Using State Table

3

 A. Milenkovic 13

Advanced VLSI Design

Predefined Unconstrained Array Types
Bit_vector, string

constant A : bit_vector(0 to 5) := “10101”;
-- (‘1’, ‘0’, ‘1’, ‘0’, ‘1’);

• Subtypes

subtype SHORT_WORD is : bit_vector(15 to 0);

• POSITIVE, NATURAL –
predefined subtypes of type integer

• include a subset of the values specified by the type

 A. Milenkovic 14

Advanced VLSI Design

VHDL Operators
Binary logical operators: and or nand nor xor
xnor
Relational: = /= < <= > >=

Shift: sll srl sla sra rol ror

Adding: + - & (concatenation)
Unary sign: + -

Multiplying: * / mod rem
Miscellaneous: not abs **

• Class 7 has the highest precedence (applied first),
followed by class 6, then class 5, etc

 A. Milenkovic 15

Advanced VLSI Design

Example of VHDL Operators

 A. Milenkovic 16

Advanced VLSI Design

Example of Shift Operators (cont’d)

 A. Milenkovic 17

Advanced VLSI Design

VHDL Functions
Functions execute a sequential algorithm and
return a single value to calling program

• A = “10010101”

• General form

 A. Milenkovic 18

Advanced VLSI Design

For Loops

4

 A. Milenkovic 19

Advanced VLSI Design

Add Function

 A. Milenkovic 20

Advanced VLSI Design

VHDL Procedures
Facilitate decomposition of VHDL code into modules
Procedures can return any number of values
using output parameters

procedure procedure_name (formal-parameter-list) is
[declarations]
begin

Sequential-statements
end procedure_name;

procedure_name (actual-parameter-list);

 A. Milenkovic 21

Advanced VLSI Design

Procedure for Adding Bit_vectors

 A. Milenkovic 22

Advanced VLSI Design

Parameters for Subprogram Calls

 A. Milenkovic 23

Advanced VLSI Design

Packages and Libraries
Provide a convenient way of referencing
frequently used functions and components

• Package declaration

• Package body [optional]

 A. Milenkovic 24

Advanced VLSI Design

Library BITLIB – bit_pack package

5

 A. Milenkovic 25

Advanced VLSI Design

Library BITLIB – bit_pack package

CPE 626: Advanced VLSI Design
VHDL Recap (Part II)

Department of Electrical and
Computer Engineering
University of Alabama in Huntsville

 A. Milenkovic 27

Advanced VLSI Design

Additional Topics in VHDL
Attributes
Transport and Inertial Delays
Operator Overloading
Multivalued Logic and Signal Resolution
IEEE 1164 Standard Logic
Generics
Generate Statements
Synthesis of VHDL Code
Synthesis Examples
Files and Text IO

 A. Milenkovic 28

Advanced VLSI Design

Signal Attributes

Attributes associated with signals
that return a value

A’event – true if a change in S has just occurred

A’active – true if A has just been reevaluated, even if A does not change

 A. Milenkovic 29

Advanced VLSI Design

Review: Signal Attributes (cont’d)
Attributes that create a signal

 A. Milenkovic 30

Advanced VLSI Design

Array Attributes

A can be either an array name or an array type.

Array attributes work with signals, variables, and constants.

6

 A. Milenkovic 31

Advanced VLSI Design

Transport and Inertial Delay

 A. Milenkovic 32

Advanced VLSI Design

Review: Operator Overloading
Operators +, - operate on integers
Write procedures for bit vector addition/subtraction

addvec, subvec

Operator overloading allows using + operator
to implicitly call an appropriate addition function
How does it work?

When compiler encounters a function declaration in which
the function name is an operator enclosed in double quotes,
the compiler treats the function as an operator overloading
(“+”)
when a “+” operator is encountered, the compiler
automatically checks the types of operands and calls
appropriate functions

 A. Milenkovic 33

Advanced VLSI Design

VHDL Package with Overloaded Operators

 A. Milenkovic 34

Advanced VLSI Design

Multivalued Logic
Bit (0, 1)

Tristate buffers and buses =>
high impedance state ‘Z’

Unknown state ‘X’
e. g., a gate is driven by ‘Z’, output is unknown
a signal is simultaneously driven by ‘0’ and ‘1’

 A. Milenkovic 35

Advanced VLSI Design

Tristate Buffers

Resolution function to
determine the actual
value of f since it is
driven from two different
sources

 A. Milenkovic 36

Advanced VLSI Design

Signal Resolution
VHDL signals may either be
resolved or unresolved
Resolved signals have an associated
resolution function

Bit type is unresolved –
there is no resolution function
if you drive a bit signal to two different values
in two concurrent statements,
the compiler will generate an error

7

 A. Milenkovic 37

Advanced VLSI Design

Signal Resolution (cont’d)
signal R : X01Z := ‘Z’; ...
R <= transport ‘0’ after 2 ns, ‘Z’ after 6

ns;
R <= transport ‘1’ after 4 ns;
R <= transport ‘1’ after 8 ns, ‘0’ after 10

ns;

 A. Milenkovic 38

Advanced VLSI Design

Resolution Function for X01Z

Define AND and OR for
4- valued inputs?

 A. Milenkovic 39

Advanced VLSI Design

AND and OR Functions Using X01Z

‘X’‘X’‘0’‘X’‘Z’

‘X’‘1’‘0’‘X’‘1’

‘0’‘0’‘0’‘0’‘0’

‘X’‘X’‘0’‘X’‘X’

‘Z’‘1’‘0’‘X’AND

‘X’‘1’‘X’‘X’‘Z’

‘1’‘1’‘1’‘1’‘1’

‘X’‘1’‘0’‘X’‘0’

‘X’‘1’‘X’‘X’‘X’

‘Z’‘1’‘0’‘X’OR

 A. Milenkovic 40

Advanced VLSI Design

IEEE 1164 Standard Logic
9-valued logic system

‘U’ – Uninitialized
‘X’ – Forcing Unknown
‘0’ – Forcing 0
‘1’ – Forcing 1
‘Z’ – High impedance
‘W’ – Weak unknown
‘L’ – Weak 0
‘H’ – Weak 1
‘-’ – Don’t care

If forcing and weak signal are
tied together, the forcing signal
dominates.

Useful in modeling the internal
operation of certain types of
ICs.

In this course we use a subset
of the IEEE values: X10Z

 A. Milenkovic 41

Advanced VLSI Design

Resolution Function for IEEE 9-valued

 A. Milenkovic 42

Advanced VLSI Design

AND Table for IEEE 9-valued

8

 A. Milenkovic 43

Advanced VLSI Design

AND Function for std_logic_vectors

 A. Milenkovic 44

Advanced VLSI Design

Generics
Used to specify parameters for a component
in such a way that the parameter values must
be specified when the component is
instantiated

Example: rise/fall time modeling

 A. Milenkovic 45

Advanced VLSI Design

Rise/Fall Time Modeling Using Generics

 A. Milenkovic 46

Advanced VLSI Design

Generate Statements
Provides an easy way of instantiating
components when we have an iterative array
of identical components
Example: 4-bit RCA

 A. Milenkovic 47

Advanced VLSI Design

4-bit Adder

 A. Milenkovic 48

Advanced VLSI Design

4-bit Adder using Generate

9

 A. Milenkovic 49

Advanced VLSI Design

Files
File input/output in VHDL

Used in test benches
Source of test data
Storage for test results

VHDL provides a standard TEXTIO package
read/write lines of text

 A. Milenkovic 50

Advanced VLSI Design

Files

 A. Milenkovic 51

Advanced VLSI Design

Standard TEXTIO Package
Contains declarations and procedures
for working with files composed of lines of text
Defines a file type named text:

type text is file of string;
Contains procedures for reading lines of text
from a file of type text and for writing lines of
text to a file

 A. Milenkovic 52

Advanced VLSI Design

Reading TEXTIO file
Readline reads a line of text and places
it in a buffer with an associated pointer
Pointer to the buffer must be of type line,
which is declared in the textio package as:

– type line is access string;
When a variable of type line is declared,
it creates a pointer to a string
Code

variable buff: line;
...
readline (test_data, buff);

reads a line of text from test_data and places it in a buffer
which is pointed to by buff

 A. Milenkovic 53

Advanced VLSI Design

Extracting Data from the Line Buffer
To extract data from the line buffer, call a
read procedure one or more times
For example, if bv4 is a bit_vector of length
four, the call

read(buff, bv4)
extracts a 4-bit vector from the buffer, sets bv4
equal to this vector, and adjusts the pointer buff to
point to the next character in the buffer. Another
call to read will then extract the next data object
from the line buffer.

 A. Milenkovic 54

Advanced VLSI Design

Extracting Data from the Line Buffer
(cont’d)

TEXTIO provides overloaded read procedures to
read data of types bit, bit_vector, boolean, character,
integer, real, string, and time from buffer
Read forms

• read(pointer, value)

• read(pointer, value, good)

good is boolean that returns TRUE if the read is successful
and FALSE if it is not
type and size of value determines which of the read
procedures is called
character, strings, and bit_vectors within files of type text ar e
not delimited by quotes

10

 A. Milenkovic 55

Advanced VLSI Design

Writing to TEXTIO files
Call one or more write procedures to write data
to a line buffer and then call writeline to write the line
to a file
variable buffw : line;
variable int1 : integer;
variable bv8 : bit_vector(7 downto 0);
...
write(buffw, int1, right, 6); --right just., 6 ch.

wide
write(buffw, bv8, right, 10);
writeln(buffw, output_file);

Write parameters: 1) buffer pointer of type line,
2) a value of any acceptable type,
3) justification (left or right), and 4) field width (number of
characters)

 A. Milenkovic 56

Advanced VLSI Design

An Example
Procedure to read data from a file and store
the data in a memory array
Format of the data in the file

address N comments
byte1 byte2 ... byteN comments

• address – 4 hex digits
• N – indicates the number of bytes of code
• bytei - 2 hex digits
• each byte is separated by one space
• the last byte must be followed by a space
• anything following the last state will not be read

and will be treated as a comment

 A. Milenkovic 57

Advanced VLSI Design

An Example (cont’d)
Code sequence: an example

12AC 7 (7 hex bytes follow)
AE 03 B6 91 C7 00 0C (LDX imm, LDA dir, STA ext)
005B 2 (2 bytes follow)
01 FC_

TEXTIO does not include read procedure
for hex numbers

we will read each hex value as a string of characters
and then convert the string to an integer

How to implement conversion?
• table lookup – constant named lookup is an array of integers

indexed by characters in the range ‘0’ to ‘F’
• this range includes the 23 ASCII characters:

‘0’, ‘1’, ... ‘9’, ‘:’, ‘;’, ‘<‘, ‘=‘, ‘>’, ‘?’, ‘@’, ‘A’, ... ‘F’
• corresponding values:

0, 1, ... 9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15

 A. Milenkovic 58

Advanced VLSI Design

VHDL Code to Fill Memory Array

 A. Milenkovic 59

Advanced VLSI Design

VHDL Code to Fill Memory Array (cont’d)

 A. Milenkovic 60

Advanced VLSI Design

Synthesis of VHDL Code
Synthesizer

take a VHDL code as an input
synthesize the logic: output may be a logic schematic with
an associated wirelist

Synthesizers accept a subset of VHDL as input
Efficient implementation?
Context

A <= B and C;

...

wait until clk’event and clk = ‘1’;

A <= B and C;

Implies CM for A Implies a register or flip-flop

11

 A. Milenkovic 61

Advanced VLSI Design

Synthesis of VHDL Code (cont’d)
When use integers specify the range

if not specified, the synthesizer may infer 32-bit register

When integer range is specified,
most synthesizers will implement
integer addition and subtraction
using binary adders with appropriate number of bits
General rule: when a signal is assigned a value,
it will hold that value until it is assigned new value

 A. Milenkovic 62

Advanced VLSI Design

Unintentional Latch Creation

What if a = 3?
The previous value of b should be held in the
latch, so G should be 0 when a = 3.

 A. Milenkovic 63

Advanced VLSI Design

If Statements
if A = ‘1’ then NextState <= 3;

end if;

What if A /= 1?

Retain the previous value for NextState?

Synthesizer might interpret this to mean that NextState is unknown!

if A = ‘1’ then NextState <= 3;

else NextState <= 2;

end if;

 A. Milenkovic 64

Advanced VLSI Design

Synthesis of an If Statement

Synthesized code before optimization

 A. Milenkovic 65

Advanced VLSI Design

Synthesis of a Case Statement

 A. Milenkovic 66

Advanced VLSI Design

Case Statement:
Before and After Optimization

12

 A. Milenkovic 67

Advanced VLSI Design

Standard VHDL Synthesis Package
Every VHDL synthesis tool provides its own package
of functions for operations commonly used in
hardware models
IEEE is developing a standard synthesis package,
which includes functions for arithmetic operations on
bit_vectors and std_logic vectors

numeric_bit package defines operations on bit_vectors
• type unsigned is array (natural range<>) of bit;
• type signed is array (natural range<>) of bit;

package include overloaded versions of arithmetic,
relational, logical, and shifting operations, and conversion
functions
numeric_std package defines similar operations on std_logic
vectors

 A. Milenkovic 68

Advanced VLSI Design

Numeric_bit, Numeric_std
Overloaded operators

Unary: abs, -
Arithmetic: +, -, *, /, rem, mod
Relational: >, <, >=, <=, =, /=
Logical: not, and, or, nand, nor, xor, xnor
Shifting: shift_left, shift_right, rotate_left,
rotate_right,
sll, srl, rol, ror

 A. Milenkovic 69

Advanced VLSI Design

Numeric_bit, Numeric_std (cont’d)

 A. Milenkovic 70

Advanced VLSI Design

Numeric_bit, Numeric_std (cont’d)

 A. Milenkovic 71

Advanced VLSI Design

Synthesis Examples (1)

 A. Milenkovic 72

Advanced VLSI Design

Synthesis Examples (2a)
Mealy
machine:
BCD to
BCD+3
Converter

13

 A. Milenkovic 73

Advanced VLSI Design

Synthesis Examples (2b)
Mealy
machine:
BCD to
BCD+3
Converter

 A. Milenkovic 74

Advanced VLSI Design

Synthesis Examples (2c)

3 FF, 13 gates

 A. Milenkovic 75

Advanced VLSI Design

Writing Test Benches
MUX 16 to 1

16 data inputs
4 selection inputs

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port(
A: in std_logic_vector(15 downto 0);
SEL: in std_logic_vector(3 downto 0);
Y: out std_logic);

end SELECTOR;

architecture RTL of SELECTOR is
begin

Y <= A(conv_integer(SEL));
end RTL;

 A. Milenkovic 76

Advanced VLSI Design

Assert Statement
Checks to see if a certain condition is true,
and if not causes an error message to be displayed

Four possible severity levels
NOTE
WARNING
ERROR
FAILURE

Action taken for a severity level depends on the
simulator

assert boolean-expression
report string-expression
severity severity-level;

 A. Milenkovic 77

Advanced VLSI Design

Writing Test Benches
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
entity TBSELECTOR is
end TBSELECTOR;

architecture BEH of TBSELECTOR is
component SELECTOR
port(

A: in std_logic_vector(15 downto 0);
SEL: in std_logic_vector(3 downto 0);
Y: out std_logic);

end component;
signal TA : std_logic_vector(15 downto 0);
signal TSEL : std_logic_vector(3 downto 0);
signal TY, Y : std_logic;
constant PERIOD : time := 50 ns;
constant STROBE : time := 45 ns;

 A. Milenkovic 78

Advanced VLSI Design

Writing Test Benches
begin
P0: process

variable cnt : std_logic_vector(4 downto 0);
begin
for j in 0 to 31 loop

cnt := conv_std_logic_vector(j, 5);
TSEL <= cnt(3 downto 0);
Y <= cnt(4);
A <= (A’range => not cnt(4));
A(conv_integer(cnt(3 downto 0))) <= cnt(4);
wait for PERIOD;

end loop;
wait;

end process;

14

 A. Milenkovic 79

Advanced VLSI Design

Writing Test Benches
begin
check: process

variable err_cnt : integer := 0;
begin
wait for STROBE;
for j in 0 to 31 loop

assert FALSE report “comparing” severity NOTE;
if (Y /= TY) then

assert FALSE report “not compared” severity WARNING;
err_cnt := err_cnt + 1;

end if;
wait for PERIOD;

end loop;
assert (err_cnt = 0) report “test failed” severity ERROR;
assert (err_cnt /= 0) report “test passed” severity NOTE;
wait;

end process;
sel1: SELECTOR port map (A => TA, SEL = TSEL, Y => TY);

end BEH;

 A. Milenkovic 80

Advanced VLSI Design

Things to Remember
Attributes associated to signals

allow checking for setup, hold times,
and other timing specifications

Attributes associated to arrays
allow us to write procedures that do not depend on the
manner in which arrays are indexed

Inertial and transport delays
allow modeling of different delay types that occur in real
systems

Operator overloading
allow us to extend the definition of VHDL operators
so that they can be used with different types of operands

 A. Milenkovic 81

Advanced VLSI Design

Things to Remember (cont’d)
Multivalued logic and the associated resolution
functions

allow us to model tri-state buses, and systems where a
signal is driven by more than one source

Generics
allow us to specify parameter values for a component
when the component is instantiated

Generate statements
efficient way to describe systems with iterative structure

TEXTIO
convenient way for file input/output

